CALCULATIONS PROBLEMS

Pearson Edexcel - Monday 8 June 2020 - Paper 3 (Calculator) Higher Tier

1.

4	(a)	Yes	P1	for start of process,	Accept values rounded or truncated to 1dp in both
	(4)	(supported)	200	eg 5×9 (= 45) or 10×14 (= 140) or 5×2 (= 10 (kg))	(a) and (b).
				or $3 \div 2 = 1.5 \text{ (boxes)}$	Ignore units
				A CONTRACTOR OF A CONTRACTOR O	
			P1	for process using ratio of areas, eg "140" ÷ "45" (= 3.1)	
				or for using ratio of amount of seed eg "10" + 3 (= 3.3)	
				or for finding coverage for 1 kg of grass seed, eg "45" ÷ 3 (= 15 (m ²))	
			P1	for process to find amount of seed needed,	Accept 9.4
				eg "140" ÷ "45" × 3 (= 9.3kg)	. vi
				or "140" ÷ "45" × "1.5" (= 4.6(boxes)) oe	Accept 4.7
				or "15" × 2 (= 30 (m ² per box)) and "140" ÷ "30" (= 4.6(boxes))	
				or for process to find area that can be seeded,	
				eg "10" \div 3 × "45" (= 150 (m ²))	
				or "140" ÷ "10" (= 14 (m²)) oe	
			Cl	for "Yes" supported by correct figures	
				eg 4.6(and 5), or 9.3and 10 or 150 and 140 (or 140 to 148.5)	
				or 15 and 14	
				5538.55555555555555555	
	(b)	Yes, (does not have enough) (supported)	Cl	for reasoning supported with correct figures, eg does not have enough seed and compares 9 (kg) with 9.3(kg) or 4.5 (boxes) with 4.6 (boxes) or 135 (m²) with 140 (m²) ft from (a)	Values used in (a) do not need repeating in (b) as long as intention is clear
		(aufferna)		107 (m) 11m 119 (m) 11 mm (n)	
1	- 1	9			

Pearson Edexcel - Tuesday 21 May 2019 - Paper 1 (Non-Calculator) Higher Tier

2.

				ł	<u> </u>
2	(a)	600	P1	for starting process to calculate amount of flour	4 implied by 200g of sugar
				eg $60 \div 15$ (= 4) or 3×50 (= 150)	
				60	
			P1	for complete process eg $\frac{60}{15}$ × "150"	
				15	
			A1	cao	
	(b)	2	P1	for process to calculate amount of butter	
	(0)	~		*	
				$eg \frac{60}{15} \times 2 \times 50 \ (= 400)$	
				15 2 30 (100)	
				OR for process to calculate the number of packs of butter needed	[butter] must be clearly stated or calculated, may
				eg [butter] ÷ 250	be seen in part (a)
				eg [butter] - 250	* **
			l		
			A1	cao	2 must not come from incorrect working
			1		

Pearson Edexcel - Thursday 6 June 2019 - Paper 2 (Calculator) Higher Tier

4	8	P1	for working with volume of the cuboid, eg 30 × 6 × 19 (= 3420)	For P marks, ignore attempts at unit conversion
			OR for using $\frac{2}{3}$ with one dimension, eg. $30 \times 2 \div 3 (= 20)$	
		P1	for "3420" × 2 ÷ 3 (= 2280) or "3420" ÷ 3 (= 1140)	
			OR "20" × 6 × 19 (= 2280)	
			OR "3420" ÷ 275 (= 12.4 = 12 cups)	
		P1	(dep on P2) for "2280" ÷ 275 (= 8(.29)) or "1140" ÷ 275 (= 4(.14))	
			OR "12" × 2 ÷ 3	
			OR for $275 \times 8 = 2200$ or $275 \times 9 = 2475$	
		A1	cao	
		1		

Pearson Edexcel - Thursday 8 November 2018 - Paper 2 (Calculator) Higher Tier

4.

5	No	P1	calculates area of trapezium eg ½ ×	7 × (10+16) (= 91)	
	(supported)	Pl	for division by coverage eg $\div 2$ or [area of trapezium] $\div 2$ (= 45.5) or process to find coverage per tin eg 5×2 (= 10)	for process to find number of tins bought eg $160 \div 16.99 = 9$ tins	[area of trapezium] needs to be clearly stated if the process of finding the area is not clear
		P1	for division to find the number of tins eg \div 5 or "45.5" \div 5 (= 9.1) or [area of trapezium] \div "10" (= 9.1)	for using whole no. of tins to find total litres eg $9 \times 5 \ (= 45)$	
		P1	(dep on at least P2) for a process to multiply a whole number of tins (rounded up) by 16.99	(dep on at least P2) for a process to find the total coverage eg "45" × 2 (= 90)	
		C1	for 'No' supported by correct figures	s eg 169.9 or 90 and 91	There must be a conclusion ("No" or equivalent wording) including the figure 169.9 and working showing processes followed.

Pearson Edexcel - Monday 12 November 2018 - Paper 3 (Calculator) Higher Tier

5.

8	8	P1	process to start the problem eg $xy = 45$ and $xz = 15$ and $yz = 27$ or 5×9 (=45) and 3×9 (=27) and 3×5 (=15) or 3, 5 and 9 stated	Maybe seen on diagram
		P1	for $3 \times 5 \times 9$ (=135) or 2 of "9" \div 2.5 (=3.6) or "5" \div 2.5 (=2) or "3" \div 2.5 (=1.2)	
		P1	for 2.5 3 (=15.625)	
		P1	for a complete process to find the number of cubes possible eg [volume] ÷ "15.625" (=8.64) or "3.6" × "2" × "1.2" (=8.64)	[Volume] must come from multiplying together what they clearly indicate as the 3 dimensions of the cuboid. The three dimensions cannot be 45, 27 and 15
		Al	cao	

Pearson Edexcel - Tuesday 12 June 2018 - Paper 3 (Calculator) Higher Tier

6.

14	240		for start to method to find total number of matches, eg 16×15 or $16^2 - 16$ or $16 \times 15 \times 2$ (= 480) or $\frac{16 \times 15}{2}$ (= 120)	Credit complete listing strategies
		A1	cao	

Pearson Edexcel - Thursday 2 November 2017 - Paper 1 (Non-Calculator) Higher Tier

9	22.5	P1	for process to find James' speed eg 50÷2.5(=20) or 50 ÷ 150 (= $\frac{1}{3}$)
		P1	for process to find James' time for 15 km eg 15 ÷ "20" (=0.75) or 15 ÷ $\frac{1}{3}$ (=45)
		P1	for process to find Peter's time for 15 km eg "45" – 5 (=40)
		P1	for process to find Peter's speed eg $15 \div "40"$ or $15 \div "40"$
		A1	oe

Pearson Edexcel - Thursday 2 November 2017 - Paper 1 (Non-Calculator) Higher Tier

8.

13 (a)	120	P1	for $\frac{4 \times 450}{15}$ or $\frac{4}{15} = \frac{x}{450}$ oe
		A1	cao
(b)	165 450	P1	5.5 or 6.5 or 165 or $\frac{5 \times 450}{15}$ (=150) and $\frac{6 \times 450}{15}$ (=180)
		A1	for $\frac{165}{450}$ oe

Pearson Edexcel - Thursday 2 November 2017 - Paper 1 (Non-Calculator) Higher Tier

9.

22 P1 for scale factor of $\frac{12}{3}$ or $\frac{3}{12}$ or $\frac{15}{12}$ or $\frac{12}{15}$ or $\frac{12}{8}$ or $\frac{15}{8}$ oe or correct pairs of corresponding sides A1 for $x=2$ P1 for complete method to find other value for $x = \frac{15}{8} \times 12 - 8$ A1 for $x = 14.5$ C1 Describes both assumptions for similarity	ly identifies 2
--	-----------------

Pearson Edexcel - Thursday 2 November 2017 - Paper 1 (Non-Calculator) Higher Tier

10.

23	x > 2	P1	for process to derive algebraic expressions for area of both rectangle and triangle eg $(x-1)(3x-2)$ and $(2x \times x) \div 2$ (condone missing brackets)
		M1	for method to rearrange inequality to $2x^2-5x+2>0$ oe providing in the form $ax^2 + bx + c>0$
		M1	for a correct method to solve $2x^2-5x+2>0$
		M1	for establishing critical values 2 and $\frac{1}{2}$
		A1	x > 2

Pearson Edexcel - Monday 6 November 2017 - Paper 2 (Calculator) Higher Tier

9	65.60		for start in using inverse proportionality, eg 5 × 4.5 (= 22.5) or 4.5 = $\frac{k}{5}$ or 5 × 4.5 × 60 (= 1350) or $\frac{5}{3}$ or $\frac{3}{5}$
		P1	for process to find number of hours for each cleaner today, eg $\frac{22.5}{3}$ (= 7.5)
		A1	for 65.6(0)
			(SC B2 for 61.5(0))

Pearson Edexcel - Monday 6 November 2017 - Paper 2 (Calculator) Higher Tier

12.

_		i		i i
	18	0.98	B1	cao
-				

Pearson Edexcel - Wednesday 8 November 2017 - Paper 3 (Calculator) Higher Tier

13.

16		Yes and correct working	B1 P1 A1	for 147.5 or 148.5 or 148.4999 or 11.75 or 11.85 or 11.84999 substitutes 11.8 < UB \leq 11.85 and 147.5 \leq LB < 148 in the formula to work out petrol consumption for 'Yes' and 8.03(3898305) from correct working
----	--	----------------------------	----------------	--

Pearson Edexcel - Thursday 25 May 2017 - Paper 1 (Non-Calculator) Higher Tier

14.

9	500	M1	recognition of 1.2 or 120% oe eg $600 \div 1.2$ oe or $x \times 1.2 = 600$ oe or $120\% = 600$
		A1	cao

Pearson Edexcel - Thursday 25 May 2017 - Paper 1 (Non-Calculator) Higher Tier

15.

13 (a)	$y = \frac{9}{x^2}$	M1	begins to work with $y = \frac{k}{x^2}$ on e.g. subs of a pair of numbers into $y = \frac{k}{x^2}$ or states $k=9$
		Al	for $y = \frac{9}{x^2}$ Accept $y = 9x^{-2}$
(b)	$\frac{3}{4}$	M1 A1	ft (dep on previous M1) subs $y = 16$ into proportional formula of the form $y = \frac{k}{x^2}$ oe oe

Pearson Edexcel - Thursday 8 June 2017 - Paper 2 (Calculator) Higher Tier

16.

4 (a)	57.1	PI	for a process to find time from Liverpool to Manchester, eg. $56 \div 70$ (= 0.8 (hrs) or 48 (mins))
		P1	for a process to find total distance, eg. 56 + 61 (= 117)
			or the total time, eg. "48" + 75 (= 123) or "0.8" + $\frac{75}{60}$ (= 2.05) with consistent units of time
		P1	(dep P2) for a correct process to find average speed with consistent units of time, eg."117" + "2.05" or "117" + "123"
		Al	for answer in the range 57 to 57.1
(b)	explanation	C1	for explaining that the time taken for the two parts of the journey must be the same or the distance from Leeds to York is $\frac{3}{1}$ of the distance from Barnsley to Leeds

Pearson Edexcel - Thursday 8 June 2017 - Paper 2 (Calculator) Higher Tier

10	(a)	Jupiter	B1	for Jupiter (accept 1.898 × 10 ²⁷)
	(b) (c)	4.5388×10^{24} Yes	B1 M1	for 4.5388×10^{24} oe (e.g. 45.388×10^{23}) for $(4.35 \times 10^9) \div (4.14 \times 10^7)$ (= $105(.07)$)
		(supported)	A1	or $(4.14 \times 10^7) \times 100$ (= 4.14×10^9) or $(4.35 \times 10^9) \div 100$ (= 4.35×10^7) for Yes with correct supporting evidence

Pearson Edexcel - Tuesday 13 June 2017 - Paper 3 (Calculator) Higher Tier

18.

4	148.00	68	P1	for a process to find the number of vanilla cakes, eg 420 × 2 ÷ 7 oe (= 120)
		5525	P1	for a process to find the number of banana cakes, eg 420 × 0.35 oe (= 147)
			P1	(dep P1) for a full process to find the number of lemon/chocolate cakes
				eg 420 – (vanilla cakes) – (banana cakes) (= 153)
			P1	(dep on previous P1) for a process to find the number of lemon cakes eg " 153 " \div 9 \times 4 oe (= 68)
			A1	cao
				OR
			P1	for writing two proportions in the same format
			P1	for combining the proportions of vanilla and banana cakes
				eg 2/7 + 7/20 (= 89/140)
			P1	(dep P1) for a full process to find the proportion or number of lemon/chocolate cakes eg 1 – "89/140" (= 51/140)
			Pl	(dep on previous P1) for a process to find the number of lemon cakes eg " $51/140$ " × $420 \div 9 \times 4$ (= 68)
			Al	cao
1				

Pearson Edexcel - Specimen Papers Set 2 - Paper 1 (Non-Calculator) Higher Tier

19.

5	500g	P1	$\frac{1}{8} \times 160 \ (=20)$
		P1	'20' × 25
		A1	500 (or 0.5)
		B1	Correct units g (or kg)

Pearson Edexcel - Specimen Papers Set 2 - Paper 1 (Non-Calculator) Higher Tier

20.

$\frac{90}{2} \times 3 = 135$	Combination with reason	P1	Links either $\frac{2}{3}$ with 90 and 60% with 84
$\frac{84}{60} \times 100 = 140$		P1	Process to find original price of microwave oven eg $\frac{90}{2} \times 3$ (=135)
		P1	Process to find original price of combination oven eg $\frac{84}{60} \times 100$ (=140)
		A1	Correct original prices £135 and £140 with interpretation of results to conclude that combination oven had greater normal price.

Pearson Edexcel - Specimen Papers Set 2 - Paper 3 (Calculator) Higher Tier

((a)	1.95	M1 M1 A1	method to find one temperature eg 4500 ÷ 1200 for complete method cao
	(b)	D	В1	cao

Pearson Edexcel - Specimen Papers Set 1 - Paper 1 (Non-Calculator) Higher Tier

22.

|--|

Pearson Edexcel - Specimen Papers Set 1 - Paper 2 (Calculator) Higher Tier

23.

57 or a correct trial totalling 57, eg. $10 + 20 + 27 = 57$ C1 for a correct deduction from correct answers,	7		11		(dep on P1) for setting up an equation using 3 algebraic terms, eg. $x + 2x + 2x + 57$ or a correct trial totalling 57, eg. $10 + 20 + 27 = 57$ for a correct deduction from correct answers, eg. Chris has 20 so it is impossible for all to have 20 since 60 marbles would be
---	---	--	----	--	---

Pearson Edexcel - Specimen Papers Set 1 - Paper 2 (Calculator) Higher Tier

24.

16		84	M1 for correct interpretation of given information leading to a method to find fd, eg. 20 ÷ 100 (thousand) or for an acceptable key P1 for a process to find at least two required frequencies, eg. 0.8 × 50 (= 40), 0.6 × 50 (= 30), 0.14 × 100 (= 14) A1 for 84 cao
----	--	----	---

Pearson Edexcel - Specimen Papers Set 1 - Paper 2 (Calculator) Higher Tier

25.

22	1.5	B1	for any correct bound clearly identified, eg. $99.65 \rightarrow x \rightarrow 99.75$
		M1 A1	or $66.5 \rightarrow y \rightarrow 67.5$ (dep on B1) for method to find UB, eg. "99.75" \div "66.5" for 1.5

Pearson Edexcel - Specimen Papers Set 1 - Paper 3 (Calculator) Higher Tier

1	$ \sqrt{(253.5 \div 6)} 6.5^3 \times 2 = 549.25 549.25 \div 10 = 54.925 $	55	P1 a process to find the scale factor of 6.5 P1 for a full process to find the amount of clay required C1 for stating 55 bags
---	---	----	---

Pearson Edexcel - Sample Paper 1 - (Non-Calculator) Higher Tier

27.

7	400	P1 Start to process eg. 1200 ÷ 60	
		A1 400 oe (accept number of whole pizzas eg. 400÷4 = 100 with 4 people per pizza)	
		C1 Eg. Assumption that sample is representative of population – it ma not be all 1200 people are going to the party – need less pizza if they don't, assume 4 people per pizza – if different may need more/fewer pizzas	y

Pearson Edexcel - Sample Paper 2 - (Calculator) Higher Tier

28.

4	conclusion	P1	30 ÷ 70 (=0.428)	26 ÷ 60 (=0.4333)	30 ÷ 26 (=1.153)
	(supported)	P1	60 × "0.428"	70 ×"0.4333…"	60× "1.153"
		C1	for conclusion linke	ed to 25.7 mins, 30.3 miles	s or 69.2 mph

Pearson Edexcel - Sample Paper 3 - (Calculator) Higher Tier

29.

5		correct figures)	P1 P1 P1 P1 A1	Process to find number of litres eg. 180 ÷ 1000 Full process to find cost per day Full process to find total cost of water used per year (accept use of alternative time period for both options) Full process with consistent units for total cost of water Correct decision from correct figures (88.13154 or correct figure for their time period)
---	--	------------------	----------------------------	---

Pearson Edexcel - Thursday 26 May 2016 - Paper 1 (Non-Calculator) Higher Tier

30.

*7 Conclusion (supported) M1 for finding the area of one rectangle which is not 6 × 10 eg 2×2.5 (=5) or 4×10 (=40) or 2.5×6 or 5×2 M1 for a complete method to find the total area eg 5+5+40 or 60–10 (=50) M1 for a complete method to find the number of tins needed eg "50" ÷ 5 + 2.5 (=4) OR for a complete method to find the number of litres needed. eg "50" ÷ 5 (=10) OR for a complete method to find the area covered by 3 tins eg 3×2.5×5 (=37.5) A1 for 50 (m²) and 4 (tins needed) or for 10 (litres) and 7.5 (litres) or for 50(m²) and 37.5(m²) C1 (dep M2) for a conclusion supported by their calculations

Pearson Edexcel - Thursday 9 June 2016 - Paper 2 (Calculator) Higher Tier

4		$400 \div 18 = 22(.2)$ $499 \div 20 = 24(.95) \text{ or } 25$ $600 \div 26 = 23(.07)$ (or equivalent in £) $18 \div 4 = 4.5$ $20 \div 4.99 = 4(.008)$ $26 \div 6 = 4.3(333)$	18 pack with supporting working	4	M1 for a method that would result in at least two values that could be used to compare two packs M1 for a complete method that would result in values that could be used to compare all three packs A1 for all fully correct figures suitable for comparison C1 ft (dep on M2) for comparison of their values with a correct conclusion from their figures
---	--	--	---------------------------------------	---	--

Pearson Edexcel - Thursday 9 June 2016 - Paper 2 (Calculator) Higher Tier

32.

6	(a)	20.3	2	M1 for $\frac{50}{1.57^2}$ oe A1 for answer in range 20.2 to 20.3
	(b)	68.04	2	M1 for $(m =) 1.8^2 \times 21$ oe A1 for 68.04
	(c)	2.61	3	M2 for a complete method to find 145% of 1.8, eg. $\frac{145}{100} \times 1.80$ oe (M1 for a method to find 45% of 1.8, eg. $\frac{45}{100} \times 1.80$ (= 0.81) or for a multiplication factor of 1.45)

Pearson Edexcel - Thursday 9 June 2016 - Paper 2 (Calculator) Higher Tier

33.

	42.28	5	M1 for method to find weekly mileage, eg. $18 \times 2 \times 5$ (= 180) or weekly car park charge, eg. 3.50×5 (= 17.50) M1 for method to find fuel used in a relevant journey, eg. "180" ÷ 45.2 (= 3.9823 gallons) or $18 \div 45.2$ (= 0.39823 gallons) M1 for a correct use of the conversion factor to convert between gallons and litres, eg. "3.9823" × 4.546 (= 18.1 litres) or "0.39823" × 4.546 (= 1.81 litres) or 1.369×4.546 (= 6.22 £/gallon) or $45.2 \div 4.546$ (= 9.94 miles/litre) M1 for a method to find the cost of a relevant journey, eg. "18.1" × 1.369 (= 24.78) or "1.81" × 1.369 (= 2.478) or "3.9823" × "6.22" (= 24.78) A1 for answer in the range 42.26 to $42.3(0)$ NB candidates could work in litres or in gallons and/or could work in £ or p
--	-------	---	--

Pearson Edexcel - Wednesday 4 November 2015 - Paper 1 (Non-Calculator) Higher Tier

	M1 for 50 × 40 × 30 (=60000) M1 for "60000" ÷ 3000 (=20) M1 for "20" × £3.50 C1 eg for 70 and comparison resulting in NO OR M1 for £60 ÷ 3.50 (=17 bottles) M1 for "17" × 3000 (=51000) M1 for 50 × 40 × 30 (=60000) C1 eg for 51000 and 60000 and comparison resulting in NO	
--	---	--

Pearson Edexcel - Friday 6 November 2015 - Paper 2 (Calculator) Higher Tier

35.

3		32 64 29	M1 for 2y or y - 3 M1 for adding their three expressions and setting equal to 125 M1 for correct method to solve $ay + b = 125$ A1 Ali 32. Bhavara 64 and Ceris 29
			A1 Ali 32, Bhavara 64 and Ceris 29

Pearson Edexcel - Thursday 4 June 2015 - Paper 1 (Non-Calculator) Higher Tier

36.

*4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			8 2 5 5	Kirsty's Plants with correct calculations	5	M1 for complete method with relative place value correct. Condone 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation or digits 5975 M1 for a complete method to find 120% of £52.50 A1 for 59.75 and 63(.00) C1 (dep on M2) for correct conclusion for their figures OR
100		200 4000 1000 + 1000 + 5 5	30 600 150 + 600 + 975	9 180 45 150 +			M1 for the start of a method to divide £52.50 by 25, eg. 2 rem 2 M1 for a complete method to divide £52.50 by 25, condone one arithmetic error, or digits 21 M1 for a complete method to find 120% of '£2.10' A1 for 2.52 C1 (dep on M2) for correct conclusion for their figures OR M1 for a complete method to find 120% of £52.50 M1 for the start of a method to divide '63' by 25, eg. 2 rem 13 M1 for a complete method to divide '63' by 25, condone one arithmetic error, or digits 252 A1 for 2.52 C1 (dep on M2) for correct conclusion for their figures

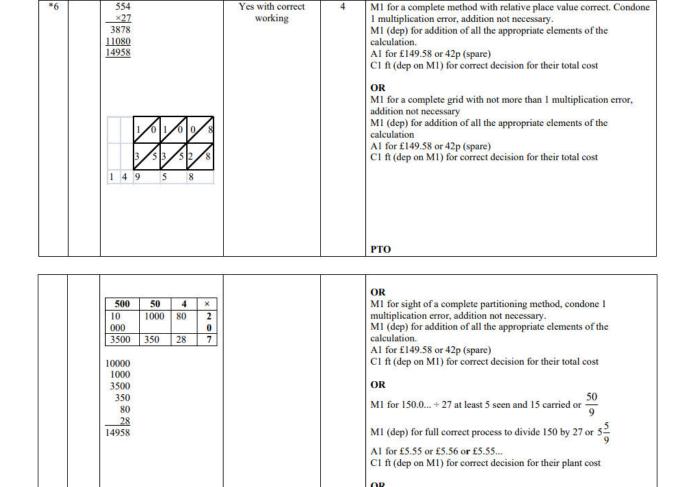
Pearson Edexcel - Monday 8 June 2015 - Paper 2 (Calculator) Higher Tier

37.

*5	$ \begin{array}{r} 1155 \div 15 = 77 \\ x + 2x + x - 7 = 77 \\ 4x - 7 = 77 \\ 4x = 84; x = 21 \end{array} $ OR $ \begin{array}{r} 15x + (15 \times 2x) + 15(x - 7) \\ = 1155 \end{array} $	Redlands 21 St Samuels 42 Francis Long 14	5	M1 for 2x or x-7 M1 for 1155 ÷ 15 (= 77) M1 (dep M2) for equation summing their three expressions to "77" A1 for 21, 42 and 14 C1 for fully correct answer with correct labels OR M1 for an expression for the cost of the pupils from Redlands M1 for expression for the cost of the pupils from either St Samuels or Francis Long
	= 1155 $60x - 105 = 1155$ $60x = 1260$ $x = 21$			Francis Long M1 (dep M2) for equation summing their three expressions to 1155 A1 for 21, 42, and 14 C1 for fully correct answer with correct labels

Pearson Edexcel - Monday 8 June 2015 - Paper 2 (Calculator) Higher Tier

21	3 ² × 180	1620	2	M1 for using a scale factor of 3 ² (= 9) A1 cao


Pearson Edexcel - Monday 8 June 2015 - Paper 2 (Calculator) Higher Tier

39.

22		1.25	3	M1 100 – 12 (= 88) or 0.88 or 1.1 ÷ 88 (= 0.0125)
				M1 for complete method, eg 1.1 ÷ 0.88
				A1 cao
				(SC B2 for 1250 as answer)

Pearson Edexcel - Wednesday 5 November 2014 - Paper 1 (Non-Calculator) Higher Tier

40.

M1 for 150.0...÷ 5.54 at least 2 seen and 392 carried M1 (dep) for full correct process to divide 150 by 5.54

C1 ft (dep on M1) for correct decision for their number of plants

A1 for 27 (.07...)

Pearson Edexcel - Wednesday 5 November 2014 - Paper 1 (Non-Calculator) Higher Tier

11	900	4	M1 for 0.2 × 7000 (=1400) or 1.2 × 7000 (=8400) oe
			M1 for 7000 + "1400" - 3000 (=5400) oe
			M1 for "5400" ÷ 6
			A1 cao

Pearson Edexcel - Wednesday 5 November 2014 - Paper 1 (Non-Calculator) Higher Tier

42.

14	100	25	4	M1 for 600 ÷ 4 (=150)
574.0		540.00	0.0	M1 for 4500 ÷ "150" (=30)
				M1 for 750 ÷ "30"
				A1 for 25 with supporting working
				The same of the sa
				OR
				M1 for $4500 \div 750$ (=6) or $750 \div 4500$ (=\frac{1}{6})
				M1 for $600 \div 4$ (=150) or $600 \div "6"$ (=100) or $600 \times "\frac{1}{6}$ " (=100)
				M1 for "150" ÷ "6" or "100" ÷ 4 or 150 × " 1 / 6"
				A1 for 25 with supporting working
				OR
				M1 for $4500 \div 750$ (=6) or $750 \div 4500$ (=\frac{1}{6})
				M1 for $\frac{1}{4} \times \frac{1}{6^{\circ}} \left(= \frac{1}{24} \right)$
				M1 for " $\frac{1}{24}$ " × 600
				A1 for 25 with supporting working
				At 101 25 with supporting working

Pearson Edexcel - Friday 7 November 2014 - Paper 2 (Calculator) Higher Tier

43.

1	(a)	360	2	M1 30 ÷ 10 (= 3) or 120 ÷ 10 (=12) or 120 + 120 + 120 oe A1 cao
	(b)	25	2	M1 for $\frac{750}{300}$ (=2.5) oe
				Al cao

Pearson Edexcel - Friday 7 November 2014 - Paper 2 (Calculator) Higher Tier

44.

Pearson Edexcel - Monday 9 June 2014 - Paper 1 (Non-Calculator) Higher Tier

4	25.60	4	M1 for a correct method to find $\frac{1}{3}$ of 24 (=8) or $\frac{2}{3}$ of 24 (=16) M1 for a correct method to find 60% (= 7.2) or 40% (= 4.8) of 12 or 60% (=14.4) or 40% (= 9.6) of 24 M1 (dep on at least M1) for a method to find the sum of their discounted adult ticket + 2 × their discounted child ticket A1 25.6(0)

Pearson Edexcel - Friday 13 June 2014 - Paper 2 (Calculator) Higher Tier

46.

	1	1	l		1
11			186.20	5	M1 for use of consistent units to find volume, $11 \times 4 \times 0.06$ (=2.64) or $1100 \times 400 \times 6$ (=2.640000) M1 (dep on vol calculation) for attempt to find number of bags needed, eg "2.64" $\div 0.4$ (=6.6 \rightarrow 7) M1 for the cost of gravel before discount eg "6.6" \times 38 or "7" \times 38 M1 for attempt to find the total cost after discount"266" \times 0.7 oe A1 for 186.2(0) OR M1 for cost of gravel per bag after discount, 38×0.7 (=26.60) M1 for use of consistent units to find volume, $11 \times 4 \times 0.06$ (=2.64) or $1100 \times 400 \times 6$ (=2640000) M1 (dep on vol calculation) for attempt to find number of bags needed, eg "2.64" \div 0.4
					, 1
					A1 for 186.2(0)

Pearson Edexcel - Wednesday 6 November 2013 - Paper 1 (Non-Calculator) Higher Tier

47.

1		 90 450 225 1.5 960	l	M1 for $6 \div 4$ (= 1.5) or $4 \div 6$ (= 0.66) or $\div 4 \times 6$ oe or sight of any one of the correct answers A1 for three correct A1 for all correct
	1 1		l	

Pearson Edexcel - Wednesday 6 November 2013 - Paper 1 (Non-Calculator) Higher Tier

48.

_	(1)	20 10 50			
7	(i)	20, 40, 60	3 and 5	4	M1 attempts multiples of both 20 and 12
		12, 24, 36, 48, 60	or		(at least 3 of each shown but condone errors if intention is clear) or
			any multiple		identifies 60 or a multiple of 60
			of 3, 5		M1 (dep on M1) for a division by 20 or 12
					or counts up 'multiples' or identifies a common multiple
					(implied if one answer is correct or answers reversed)
					A1 cheese slices (packets) 3, burgers (boxes) 5
					or any multiple of 3, 5
					,
					OR
		$20 = 4 \times 5 = 2 \times 2 \times 5$			M1 for expansion of either 20 or 12 into factors
		$12 = 4 \times 3 = 2 \times 2 \times 3$			M1 for demonstration that both expansions include 4 (or 2 × 2)
		12 4.5 2.2.5			A1 cao for cheese slices (packets) 3, burgers (boxes) 5
					111 cuo foi effecte sirves (puercus) 5, ourgers (boxes) 5
	(ii)		60		B1 for 60 or ft from their correct answer in (i) or ft 'common
	(11)		00		multiple'
					munipie

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

6	19	4	M1 for 130 – 96 (=34)
			M1 for 73 – 55 (=18)
			M1 for '34' – 9 – '18' + 12
			A1 cao
			OR
			M1 for 96 – 55 – 12 (=29)
			M1 for 9 + '29' (=38)
			M1 for 130 – 73 – '38'
			A1 cao

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

50.

*13	Distance ÷ speed: 30 ÷ 70 (= 0.42-0.43); Distance ÷ time: 30 ÷ 26 (=1.15); Speed × time: = 70 × 26 (=1820 mins); mph to miles/min = 70÷ 60 (=1.16-1.17); Minutes to hours is 26 ÷ 60 (=0.43)	No with correct figure	3	M1 for a calculation which uses the Time × Speed = Distance relationship OR a conversion of units eg between hours & minutes or between mph & miles per min M1 for a calculation involving both of the above C1 for "no" with a correct calculation, with units, from working: 25.2-25.8 minutes, 30.1-30.8 miles, 69-69.3 mph NB: 70 + 26 × 30 as a single stage calculation gets 0 marks

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

51.

A1 cao

Pearson Edexcel - Tuesday 11 June 2013 - Paper 1 (Non-Calculator) Higher Tier

*Q15	No + explanation	3	M1 for 500 × 9 × 10 ⁻³ oe A1 for 4.5 C1 (dep M1) for correct decision based on comparison of their paper height with 4 OR M1 for 4 ÷ 500 oe A1 for 0.008 C1 (dep M1) for correct decision based on comparison of their paper thickness with 0.009
			OR M1 for $4 \div (9 \times 10^{-3})$ oe A1 for $444(.4)$ C1 (dep M1) for correct decision based on comparison of their number of sheets of paper with 500

Pearson Edexcel - Friday 14 June 2013 - Paper 2 (Calculator) Higher Tier

53.

*2		Not enough mincemeat since 600<700 OR Only able to make 38 mince pies since insufficient mincemeat	4	M1 for 45 ÷ 18 (= 2.5) M1 for 2.5 used as factor or divisor A1 for ingredients as 562.5 and 875 and 250 and 700 and 2.5 (accept 2 or 3) OR for availables as 400, 400, 200 240, 2.4 (accept 2 or 3) C1 ft (dep on at least M1) for identifying and stating which ingredient is insufficient for the recipe (with some supportive evidence) OR M1 for a correct method to determine the number of pies one ingredient could produce M1 for a correct method to determine the number of pies all ingredient could produce A1 for 80 and 51 and 90 and 38 and 108 C1 ft (dep on at least M1) for identifying and stating which ingredient is insufficient for the recipe. (with some supportive evidence)

Pearson Edexcel - Friday 14 June 2013 - Paper 2 (Calculator) Higher Tier

54.

8 M1 for splitting the pentagon (or show the recognition of th "absent" triangle) and using a correct method to find the are one shape M1 for a complete and correct method to find the total area M1 (dep on at least one prev M1) for multiplying their total by 2.56 (where total area is a calculation involving at least t areas) A1 cao	8
---	---

Pearson Edexcel - Friday 14 June 2013 - Paper 2 (Calculator) Higher Tier

55.

21	or $\frac{460}{9.5}$ or
----	-------------------------

Pearson Edexcel - Monday 4 March 2013 - Paper 2 (Calculator) Higher Tier

	No + comparison	3	M1 for a correct start to the process
			eg. $\frac{225}{9}$ or $\frac{475}{225}$ or $\frac{20}{9}$ or $\frac{475}{20}$
			M1 for completion of a fully correct method that will lead to an appropriate
			comparison
			C1 (dep on M2) for a correct statement with conclusion with 500 g
			or 25g more needed
			or 19 cakes
			or 25g and 23.75g
			SC: If no working then B1 for a correct statement with correct figures and units
		No + comparison	No + comparison 3

Pearson Edexcel - Monday 4 March 2013 - Paper 2 (Calculator) Higher Tier

57.

6	414.96	5	M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method to find the cost of oil required before the discount M1 for a correct method of finding 5% of their calculated cost M1 (dep on previous M1) for a correct method to find the discounted cost A1 for correct answer of 414.96 or 41496p
			M1 for a correct method of finding 5% of the cost of 1 litre of oil M1 (dep on previous M1) for a correct method to find the discounted cost of 1 litre of oil M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method to find the discounted cost of the oil required A1 for correct answer of 414.96 or 41496p
			OR
			M1 for a correct method to work out the amount of oil required to fill the tank M1 for a correct method of finding 5% of their calculated amount of oil M1 (dep on previous M1) for a correct method to find the reduced amount of oil M1 for a correct method to find the cost of the reduced amount of oil A1 for correct answer of 414.96 or 41496p

Pearson Edexcel - Monday 4 March 2013 - Paper 2 (Calculator) Higher Tier

58.

23		11	2	M1 for a $\frac{68}{300} \times 50$ oe A1 for 11 (accept 12)
l				

Pearson Edexcel - Tuesday 6 November 2012 - Paper 1 (Non-Calculator) Higher Tier

59.

1	180×1.5 40×1.5 110×1.5 30×1.5	Flour = 270 Ginger = 60 Butter = 165 Sugar = 45	3	M1 for ×24÷16 oe or 24/16 or 1.5 seen or 180 + 90 (=270) or 40 + 20 (=60) or 110 + 55 (=165) or 30 + 15 (=45) or sight of any one of the correct answers A2 for all 4 correct answers (A1 for 2 or 3 correct answers)
---	--	--	---	--

Pearson Edexcel - Tuesday 6 November 2012 - Paper 1 (Non-Calculator) Higher Tier

3*		9	4	M1 for 7155 – 7095 or 60 seen or 7155×15 (or .15) or 7095×15 (or .15) or 107325 or 106425 or 1073.25 or 1064.25 M1 for '60' ×15 or 7155×15 – 7095 × 15 [or .15 instead of 15] A1 for 9 or 9.00 or 900 C1 (ft) for answer with correct units (money notation) identified as the answer.
----	--	---	---	---

Pearson Edexcel - Tuesday 6 November 2012 - Paper 1 (Non-Calculator) Higher Tier

61.

7	$\frac{9}{2} \times (12+18) = 135$ $135 \div 20 = 6.75 \text{ (=7 bags)}$ 7×4.99 OR $18 \times 9 - \frac{1}{2} (6 \times 9)$ $= 135$ $135 \div 20 = 6.75 \text{ (=7 bags)}$ 7×4.99	34.93	4	M1 for $\frac{9}{2} \times (12+18)$ or $18 \times 9 - \frac{1}{2}(6 \times 9)$ or $9 \times 12 + \frac{1}{2} \times (18-12) \times 9$ or 135 seen M1 (dep) for '135'÷ 20 or 6 or 7 seen M1 (dep on previous M1) for '6' × 4.99 or '7' × 4.99 A1 cao [SC: M1 for $(12 \times 9 + 6 \times 9) \div 20$ (= $162 \div 20$) or 8 or 9 seen M1 (dep) for '8' × 4.99 or '9' × 4.99 OR M1 for $(18 \times 9 - 6 \times 9) \div 20$ (= $108 \div 20$) or 5 or 6 seen M1 (dep) for '5' × 4.99 or '6' × 4.99]
---	--	-------	---	--

Pearson Edexcel - Tuesday 6 November 2012 - Paper 1 (Non-Calculator) Higher Tier

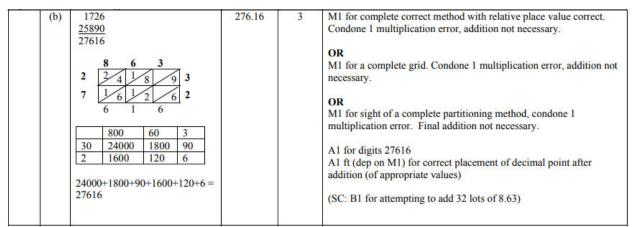
62.

18		12	4	B1 for 60 seen M1 for (360 – 60) ÷ 2 (=150) M1 for 360 ÷ (180 – 150) or 150×n=180(n-2) oe A1 cao OR B1 for 60 seen M1 for 60 ÷ 2 (=30) M1 for 360 ÷ (60÷2) A1 cao
				OR M2 for 30 seen M1 for 360 ÷ 30 A1 cao

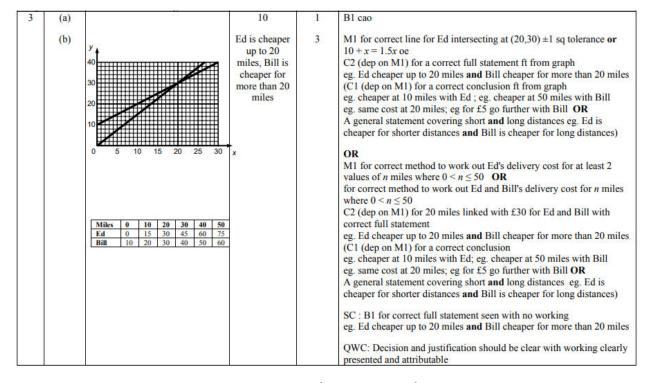
Pearson Edexcel - Thursday 8 November 2012 - Paper 2 (Calculator) Higher Tier

*3	3×£193.86 = £581.58 £581.58 ×0.85=£494.343	£494.34	5	M1 3 × 193.86 (= 581.58) B1 ft correct discount % identified or used in working (may be identified in table) M1 '581.58' × '0.15' (=87.23(7)) M1 (dep on the previous M1) '581.58' - '87.23(7)' (= 494.34(3) or 494.35) C1 (dep on all method marks) for £494.34 or £494.35 identified as final answer with correct money notation
				OR M1 3 × 193.86 (= 581.58) B1 ft correct discount % identified or used in working (may be identified in table) M2 '581.58'×'0.85' (= 494.34(3)) (M1 '581.58' × '1.15' (=668.81(7)) C1 (dep on all method marks) for £494.34 or £494.35 identified as final answer with correct money notation NB. Throughout, values may be rounded or truncated to 2 decimal places

Pearson Edexcel - Thursday 8 November 2012 - Paper 2 (Calculator) Higher Tier


64.

65.


7	17.8 ÷ 160 × 210 = 0.11125 × 210 = 23.3625 g OR	23.3(625)	3	M1 17.8 ÷ 160 (=0.11125) or 17.8 × 210 (=3738 or 210 ÷ 160 (=1.3125)
	210 ÷ 160 × 17.8 = 1.3125 × 17.8 = 23.3625 g			M1 (dep) '0.11125' × 210 or '3738'÷160 or '1.3125' × 17.8
	OR			A1 for answer in range 23.3 - 23.4
	210 - 160 (=50)			OR
	$\frac{17.8}{160}$ ×'50'(= 5.5625)			M1 for $\frac{17.8}{160} \times (210-160) (=5.5625)$
	17.8 + 5.5625			M1 (dep) for 17.8 + '5.5625'
				A1 for answer in range 23.3 - 23.4
				OR
				M1 for correct method to find weight of 2 cm or 5 cm or 10 cm
				M1 (dep) for complete method A1 for answer in range 23.3 - 23.4

Pearson Edexcel - Monday 11 June 2012 - Paper 1 (Non-Calculator) Higher Tier

2	(a)	$360 \div 60 = 6$	Yes and 30	3	M1 for dividing side of patio by side of paving slab
-	(4)	$300 \div 60 = 5$	2 C3 and 30	-	eg. 360 ÷ 60 or 300 ÷ 60 or 3.6 ÷ 0.6 or 3 ÷ 0.6 or
		6 × 5 =			6 and 5 seen (may be on a diagram) or 6 divisions seen on length of diagram or 5
		0 ^ 3 -			divisions seen on width of diagram
					M1 for correct method to find number of paving slabs
					- 1997-1997-1997-1997-1997-1997-1997-199
					eg. $(360 \div 60) \times (300 \div 60)$ oe or 6×5 or 30 squares seen on diagram
					(units may not be consistent)
					A1 for Yes and 30 (or 2 extra) with correct calculations
					OR
					M1 for correct method to find area of patio or paving slab
					eg 360 × 300 or 108000 seen or 60 × 60 or 3600 seen or 3.6 × 3 or 10.8 seen or
					0.6 × 0.6 or 0.36 seen
					M1 for dividing area of patio by area of a paving slab eg. $(3.6 \times 3) \div (0.6 \times 0.6)$ oe
					(units may not be consistent)
					A1 for Yes and 30 (or 2 extra) with correct calculations
					OR
					M1 for method to find area of patio or area of 32 slabs
					eg. $60 \times 60 \times 32$ or 360×300
					M1 for method to find both area of patio and area of 32 slabs
					eg. $60 \times 60 \times 32$ and 360×300
					(units may not be consistent)
					A1 for Yes and 115200 and 108000 OR
					Yes and 11.52 and 10.8
					NB : Throughout the question, candidates could be working in metres or
					centimetres

Pearson Edexcel - Monday 11 June 2012 - Paper 1 (Non-Calculator) Higher Tier

Pearson Edexcel - Monday 11 June 2012 - Paper 1 (Non-Calculator) Higher Tier

67.

6	(a)		30	2	M1 for 25 ÷ 10 or 2.5 seen or 10 ÷ 25 or 0.4 seen or
					12 + 12 + 6 oe or a complete method eg. 25 × 12 ÷ 10 oe A1 cao
	(b)	1000 ÷ 200 × 12	60	2	M1 for 500÷50 or 1000÷200 or 500÷10 OR correct scale factor clearly linked with one ingredient eg. 10 with sugar or 5 with butter or flour or 50 with milk OR answer of 120 or 600 A1 cao

Pearson Edexcel - Monday 11 June 2012 - Paper 1 (Non-Calculator) Higher Tier

12	$6 \times 10 \times 8 = 480$	4	3	M1 for 6 × 10 × 8 or 480 seen
	$480 \div (6 \times 20) =$			M1 (dep) for '480' \div (6 × 20) oe
				A1 cao
				OR
				M1 for $20 \div 10$ (=2) or $10 \div 20$ (= $\frac{1}{2}$) or $\frac{8}{20}$ oe or $\frac{20}{8}$ oe
				M1 (dep) for $8 \div '2'$ or $8 \times \frac{1}{2}$ or $\frac{8}{20} \times 10$ oe or
				$10 \div \frac{20}{8}$
				A1 cao
				SC : B2 for answer of 16 coming from $\frac{20 \times 8 \times 6}{10 \times 6}$ oe

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher Tier

69.

5	(1	17 - 2.8) × $9.5 = 134.9$	5	5	M1 for (17 – 2.8) × 9.5 (=134.9)
	π	$1 \times (3.8 \div 2)^2 = 11.34$			or $17 \times 9.5 - 2.8 \times 9.5$ (= $161.5 - 26.6 = 134.9$)
	1	$34.9 - 2 \times 11.34 = 112.21$			M1 for $\pi \times (3.8 \div 2)^2$ (= 11.33 – 11.35)
	1	$12.21 \div 25 = 4.488$			M1 (dep on M1) for '134.9' $-2 \times$ '11.34'
					A1 for 112 - 113
					C1(dep on at least M1) for 'He needs 5 boxes' ft from
					candidate's calculation rounded up to the next integer

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher Tier

70.

	1 1			1
6		Farm shop	4	M1 for 12.5 ÷ 2.5 (=5)
				M1 for '5'×1.83 or '5' × 183
				A1 for (£)9.15 or 915(p)
				C1 (dep on at least M1) for decision ft working shown
				c r (asp on an reason man account morning one ma
				OR
				M1 for 12.5 ÷ 2.5 (=5)
				M1 for 9 ÷ '5' or 900 ÷ '5'
				A1 for (£)1.8(0) or 180(p)
				C1 (dep on at least M1) for decision ft working shown
				an.
				OR
				M1 for $9 \div 12.5$ (=0.72) or $1.83 \div 2.5$ (=0.732)
				M1 for $9 \div 12.5$ (=0.72) and $1.83 \div 2.5$ (=0.732)
				A1 for $72(p)$ and $73.(2)(p)$ or $(£)0.72$ and $(£)0.73(2)$
				C1 (dep on at least M1) for decision ft working shown
				OR
				M1 for $12.5 \div 9 (= 1.388)$
				M1 for 2.5 ÷ 1.83 (= 1.366)
				A1 for 1.38 and 1.36 truncated or rounded
				C1 (dep on at least M1) for decision ft working shown

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher Tier

*15	180 × 365 =65700 65700 ÷1000 =65.7 65.7 × 91.22 =5993.154 5993.154÷100 + 28.20 =88.13	Decision (Should have a water meter installed)	5	Per year M1 for 180 × '365' (= 65700) M1 for '65700' ÷ 1000 (= 65.7 or 65 or 66) M1 for '65.7' × 91.22 (= 5993) A1 for answer in range (£)87 to (£)89 C1 (dep on at least M1) for conclusion following from working seen
	D U C T 366 65880 6010 88.30 365 65700 5993 88.13 65000 5929 87.49 66000 6020 88.40 364 65520 5976 87.96 360 64800 5911 87.31 336 60480 5517 83.37			OR (per day) M1 for 107 + '365' (= 0.293) M1 for 180 + 1000 × 91.22 (= 16.4196) M1 for 28.2 + '365' + '0.164196' (units must be consistent) A1 for 29 - 30(p) and 24 - 24.3(p) oe C1 (dep on at least M1) for conclusion following from working seen OR M1 for (107 - 28.20) + 0.9122 (= 86.384) M1 for '86.384' × 1000 (= 86384.5) M1 for '365' × 180 (= 65700) A1 for 65700 and 86384.5 C1 (dep on at least M1) for conclusion following from working seen NB: Allow 365 or 366 or 52×7 (=364) or 12 × 30 (=360) or 365% for number of days

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher Tier

72.

2	3 (a)(i)	Explanation : Each member of	Each member of the	2	B1 for explanation
		the population has an equal chance of selection	population has an equal chance of selection		
		chance of selection	chance of selection		
	(ii)	Description : Eg. number each	Valid method		B1 for an acceptable description
		student and use random select on a calculator			
	(b)	239+257+248+190+206=1140	21	2	M1 for $\frac{239}{1140!} \times 100$ oe or 20.96
		239 ×100			111 for 1140' × 100 de di 20.96
		1140			A1 cao

Pearson Edexcel - Friday 2 March 2012 - Paper 3 (Non-Calculator) Higher Tier

3 (a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.66	3	M1 for a complete method with relative place value correct. Condone 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation A1 for 42.66(p) M1 for a complete grid with not more than 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation A1 for 42.66(p) M1 for sight of a complete partitioning method, condone 1 multiplication error, addition not necessary. M1 (dep) for addition of the all the appropriate elements of the calculation A1 cao OR M2 for repeated addition, exactly 18 seen A1 for 42.66(p)
(b)	$10\% \text{ of } 85 = 85 \div 10$ $85 - 8.5$ Or $90\% \text{ of } 85 = (85 \div 10) \times 9$	£76.50	3	M1 for $\frac{10}{100} \times 85$ or $85 \div 10$ (=8.5) oe M1 (dep) for $85 - {}^{\circ}8.5{}^{\circ}$ A1 £76.50(p) or £76.5(p) OR M2 for $\frac{90}{100} \times 85$ or $(85 \div 10) \times 9$ oe A1 £76.50(p) or £76.5(p)

Pearson Edexcel - Monday 5 March 2012 - Paper 4 (Calculator) Higher Tier

74.

4	$3 \times 65 = 195$	234	4	M1 for 3 × 65 (= 195)
	$195 \times \frac{20}{100} = 39$ $195 + 39 =$			M1 for "195" × 20/100 oe or 39 M1 (dep M2) for adding "195" and "39" A1 cao
				OR M1 for $65 \times \frac{20}{100}$ oe or 13 M1 (dep M1) for adding 65 and "13" M1 (indep) for $(65 + "13") \times 3$ A1 cao
				OR M2 for 78 seen M1 for 78 × 3 A1 cao (SC B3 for 208 as answer from 195 + 13 SC B2 for 312 as answer or 195 + 13 SC B1 for 52 from 20% of 260)

Pearson Edexcel - Monday 6 June 2011 - Paper 3 (Non-Calculator) Higher Tier

1	15 ÷ 10	120, 90, 45, 54	3	M2 for any one of 80 + 40 or 60 + 30 or 30 + 15 or 36 + 18
				or 120 or 90 or 45 or 54 seen
	80 × 1.5			Al cao
	60 × 1.5			OR
	30 × 1.5			M1 for $15 \div 10$ or $3 \div 2$ or sight of 1.5
	36 × 1.5			M1(dep) for $80 \times '1.5'$ or $60 \times '1.5'$ or $30 \times '1.5'$ or
				36 × '1.5'
				Al cao
				OR
				M1 for 80 ÷ 10 or 60 ÷ 10 or 30 ÷ 10 or 36 ÷ 10 or 8 or 6
				or 3 or 3.6
				M1(dep) for '8' \times 15 or '6' \times 15 or '3' \times 15 or '3.6' \times 15
				Al cao
				OR
				M1 for $80 \div 2$ or $60 \div 2$ or $30 \div 2$ or $36 \div 2$ or 40 or 30 or
				15 or 18
				M1 (dep) for '40' × 3 or '30' × 3 or '15' × 3 or '18' × 3
				Al cao

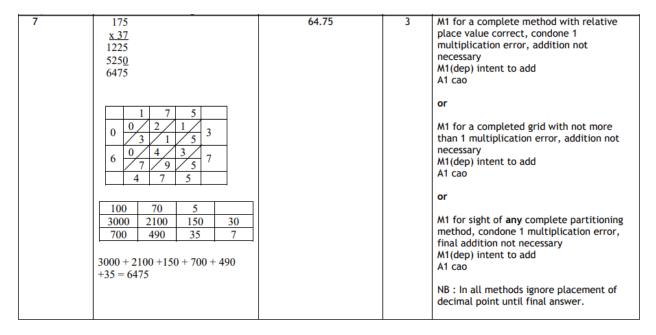
Pearson Edexcel - Monday 6 June 2011 - Paper 3 (Non-Calculator) Higher Tier

76.

Ī	6	360 ÷ 30	12	2	M1 for 360 ÷ 30
					Al cao

Pearson Edexcel - Friday 10 June 2011 - Paper 4 (Calculator) Higher Tier

77.


16	(100% – 10%)×Normal Price=£4.86 Normal Price = £4.86 ÷ 0.9	£5.40	3	M1for '4.86 is 90%' or (100% – 10%) × Normal Price = 4.86 or 4.86 ÷ 90 M1 for 4.86 ÷ 0.9 or 4.86 × 10 ÷ 9 oe A1 £5.40 (accept 5.4) OR M1 10% = £0.54 or £4.86 ÷ 9 M1 (dep) £4.86 + '£0.54' A1 £5.40 (accept 5.4)
				A1 £5.40 (accept 5.4)

Pearson Edexcel - Friday 10 June 2011 - Paper 4 (Calculator) Higher Tier

78.

22	$700 \div (750 + 700 + 900) \times 50$	15	2	M1 for $700 \div (750 + 700 + 900) \times 50$ or
	$= 700 \div 2350 \times 50$			14.8or 14.9 seen
	= 14.8936			Al cao

Pearson Edexcel - Tuesday 9 November 2010 - Paper 3 (Non-Calculator) Higher Tier

Pearson Edexcel - Tuesday 9 November 2010 - Paper 3 (Non-Calculator) Higher Tier

80.

17E aa
×0.175 oe

Pearson Edexcel - Tuesday 9 November 2010 - Paper 3 (Non-Calculator) Higher Tier

81.

25	$\frac{180}{1000} \times 50$	9	2	M1 for $\frac{180}{1000} \times 50$ oe A1 cao

Pearson Edexcel - Friday 12 November 2010 - Paper 4 (Calculator) Higher Tier

82.

4	(a)	3 × 100	300	2	M1 for 3 × 100 or 100 ÷ 6 × 18 oe A1 cao
	(b)	2 ÷ ½ × 6	24	2	M1 for $2 \div \frac{1}{2} \times 6$ oe A1 cao

Pearson Edexcel - Friday 12 November 2010 - Paper 4 (Calculator) Higher Tier

18	19.5 × 1000 ÷ 210	Explanation	3	M1 for converting between ml and l
	= 19500 ÷ 210 = 92.8(5714)			correctly or for 0.21 or 19500 seen
	or 92 × 210 = 19320 = 19.32 <i>l</i>			M1 for "19500" ÷ "210" or 92 × "210" or
	93 × 210 = 19530 = 19.53 <i>l</i>			93 × "210" or "19500" ÷ 92
	or			A1 for a worded explanation with correct
	19500 ÷ 92 = 211.95			calculations
	19500 ÷ 93 = 209.67			

Pearson Edexcel - Friday 11 June 2010 - Paper 4 (Calculator) Higher Tier

84.

1	120×1.5 8×1.5 420×1.5 180×1.5	180 12 630 270		M1 for \times 6 ÷ 4 or $\frac{6}{4}$ or ÷4×6 oe (120+60) or 1.5 seen or sight of any one of the four correct answers A1 for 2 or more correct answers A1 for 4 correct answers
---	--	-------------------------	--	--

Pearson Edexcel - Tuesday 10 November 2009 - Paper 4 (Calculator) Higher Tier

85.

10	$360 + \frac{17.5}{100} \times 360$	423	3	M1 for $\frac{17.5}{100} \times 360$ oe or $10\% + 5\% + 2.5\%$ oe
				(condone 1 calculation error) or 63 seen or 36, 18 and 9 seen M1 (dep) for 360 + '63' A1 for 423
				OR
				M2 for 1.175 × 360 oe A1 for 423

Pearson Edexcel - Tuesday 10 November 2009 - Paper 4 (Calculator) Higher Tier

86.

21	132.88 ÷ 88 × 100	151	3	M1 for recognising that 88% is equivalent to 132.88
				M1 for 132.88 ÷ 88 × 100 oe
				Al cao

Pearson Edexcel - Tuesday 10 November 2009 - Paper 4 (Calculator) Higher Tier

24	85 ÷ 382 × 50	11	2	M1 for 85 ÷ 382 × 50 oe or 11.1() seen
				A1 cao

OCR GSCE – Tuesday 3 November 2020 – Paper 4 (Calculator) Higher Tier

88.

10	142.2[0] with correct working	6	M1 for 36 ² or 1296	Correct working requires M1 AND M1 AND M1
			M1 for $k \times \pi \times 18^2$ oe where $k = \frac{1}{2}$, 1, 1½ or 3	M2 implied by 2822 to 2823.02 or M1 implied by 1526 to 1527.02, 1017 to 1018.008, 508 to 509.004, 3051 to 3054.024, 162π, 324π,
			AND	486π rot to at least nearest integer
			M1 for <i>their</i> area × 30	their area cannot be 36 and M1 implied by 84660 to 84 690.6 or 84.66 to 84.7
			M1 for their mass ÷ 1000 and ÷ 10 or counting up in 10 000s to their mass	their mass is attempt at (rectangle and circle(s)) × 30, M1 implied by 8.46 to 8.47
			AND	
			M1 for <i>their</i> 9 × 15.8	their 9 dep. on fourth M1 scored with a rounding up to next integer
			If 0, 1 or 2 scored instead award SC3 for answer of 142.2[0] with insufficient working	
			If 0 or 1 scored instead award SC2 for 2822 to 2823.02	
			If 0 scored award SC1 for 1526 to 1527.02, 1017 to 1018.008, 508 to 509.004, 3051 to 3054.024, 162π , 324π , 486π rot to at least nearest integer	

OCR GSCE – Monday 9 November 2020 – Paper 6 (Calculator) Higher Tier 89.

4	(a)	e.g. $\sqrt{\left(\frac{4\times400}{0.5\times200}\right)^3} = \sqrt{16^3} = 64$	3	B2 for 4, 400, 0.5 and 200 or B1 for at least two of 4, 400, 0.5 and 200	For full marks, at least one of these intermediate steps leading to 64 must be seen $\sqrt{16^3}$ or 4^3 or $\sqrt{4096}$
	(b)	38.7 to 38.9	4	B2 for 46.1 to 46.11 or 17.89 to 17.9 or B1 for 12.8 to 12.9 or 3.57 to 3.6[0] or 2125 to 2126 and M1 for (64 – their 46.1 to 46.11) ÷ their 46.1 to 46.11 [× 100] oe	Accept 39 with correct working

OCR GSCE – Monday 11 November 2019 – Paper 6 (Calculator) Higher Tier

90.

10	а	4 + 11 + 8 = 23 seen	1		Accept written as a sum in a column
	b	e.g. First column: n + (n + 7) + (n + 6) = 3n + 13 Second column: (n + 1) + (n + 8) + (n + 5) = 3n + 14 (3n + 14) - (3n + 13) = 1	5	B2 for consistent algebraic terms for at least first two columns of the grid or B1 for at least 3 algebraic terms for consecutive numbers seen AND	e.g. n , $(n + 7)$, $(n + 6)$ and $(n + 1)$, $(n + 8)$, $(n + 5)$ e.g. n , $(n + 1)$, $(n + 2)$
				M1 for algebraic sum of first or second column shown M1 for algebraic sum of first and second columns shown and correctly simplified A1 for sum of second column – sum of first column = 1 calculated or explained from correct working or M1 for difference of one pair of algebraic terms from first and second column shown M1 for differences of two further pairs of algebraic terms from first and second column, with all three pairs correctly simplified A1 for each difference found as +1 or -1 oe and summed/explained to a difference of +1. Correct algebra and reasoning throughout If 0 scored, allow SC1 for a correct numerical or descriptive example using either method and stating an overall difference of 1	e.g. $n + (n + 7) + (n + 6)$ or in column e.g. $n + (n + 7) + (n + 6) = 3n + 13$ A1 for e.g. $3n + 14$ and $3n + 13$ and "second column is 1 more than the first" but A0 for e.g. $3n + 14$ and $3n + 13$ and "difference of 1" or for $(3n + 14) - 3n + 13 = 1$ e.g. "the difference between $n + 1$ and n is 1" e.g. " $n + 1$ is 1 more than n " Condone poor use of brackets for both M marks

OCR GSCE – Thursday 6 June 2019 – Paper 5 (Non-Calculator) Higher Tier

91.

3	(a)	40	3	M2 for $\frac{1.68-1.20}{1.20}$ [× 100] oe Or M1 for $\frac{1.68}{1.20}$ oe or for 1.68 – 1.20 oe	eg $\frac{48}{1.20}$ or $\frac{48}{120}$ or 0.4 For M1 accept 168 – 120 oe eg 48 M1 implied by 1.4 or 140
	(b)	450	3	M2 for 360 ÷ 0.8 oe or B1 for 0.8[0] oe seen or for 360 associated with 80% isw	For B1 0.8 oe seen allow fraction but not just for 80%

OCR GSCE – Tuesday 11 June 2019 – Paper 6 (Calculator) Higher Tier

1	а	5400 or 5401 or 5402 final answer	2	M1 for figs 35 ÷ figs 648, soi by figs 540[1] or for 0.000 064 8 seen	
	b	Any reference to average/inexact weight oe [in packet weight or weight of a grain] or recognising that the number of grains of salt must be integer oe	1		Condone any mention of average for variation and/or size for weight Mark the best part if no contradiction or wrong statement See appendix

OCR GSCE – Tuesday 11 June 2019 – Paper 6 (Calculator) Higher Tier

93.

6		108 nfww	4	B3 for $\frac{108}{300}$		
				OR M3 for $(300 - \frac{23}{50} \times 300) \div 3 \times 2$ oe		May use percentages or decimals for M marks
				or M2 for $300 - \frac{23}{50} \times 300$	soi 162	
				or M1 for $\frac{23}{50} \times 300$ oe	soi 138	
				Alternative method M1 for [p(white or red) =] $1 - \frac{23}{50}$	soi $\frac{27}{50}$	
				M1 for <i>their</i> $\frac{27}{[50]}$ ÷ 3 × 2	soi $\frac{18}{[50]}$	May use 23 : 18 : 9 for M2
				M1 for their 18×6 or their $\frac{18}{50} \times 300$		

OCR GSCE – Thursday 8 November 2018 – Paper 5 (Non-Calculator) Higher Tier

94.

5	(a)	12	3	M2 for $\frac{57.8 - 54.2}{0.3}$ oe or M1 for 57.8 – 54.2 or 3.6 seen or for repeated subtraction of 0.3 from 57.8 or for repeated addition of 0.3 to 54.2	Minimum of 2 repeats Minimum of 2 repeats
5	(b)	Answer would be bigger oe	1		e.g. It would take more days It will take longer

OCR GSCE – Monday 12 November 2018 – Paper 6 (Calculator) Higher Tier

16	There could be £301 e.g. because 2635 ÷ 8.745 = 301[.3]	3	M2 for a calculation of (2625 to 2635) + (8.745 to 8.755) oe correctly evaluated to an answer of 301() or for a calculation of (2632.245 to 2635) + 301 oe correctly evaluated to an answer of 8.745 to 8.755 or for a calculation of 301 × (8.745 to 8.7541528) oe correctly evaluated to an answer of 2625 to 2635 or M1 for any further calculation of (2625 to 2635) + (8.745 to 8.755) or (2625 to 2635) + (8.745 to 8.755) or (2625 to 2635) + 301 or 301 × (8.745 to 8.755) but not 2625 + 8.755 or 2630 + 8.75 or B1 for 2635, 2.635, 8.745 or 8745 seen	For full marks, their conclusion must follow from a relevant calculation which shows that 301 is a possible answer (either use of 301 and two weights in range, or an answer of more than 301 rounded down, and not an answer of less than 301 rounded up) Calculations may be done in grams as shown, or converted to kg. Common calculations for at least M2 include: 2635 + 8.75 = 301.1() 2635 + 8.745 = 301.3() Common calculations scoring only M1 include: 2625 + 8.75 (= 300) 2630 + 8.745 = 300.7()
----	---	---	--	---

OCR GSCE – Tuesday 12 June 2018 – Paper 6 (Calculator) Higher Tier 96.

13	(a)	$288\pi $ or 904.3 to 905	2	M1 for $\frac{4}{3}$ (×) π (×) 6^3	Accept 904 if M1 scored
	(b)	20.0[9] to 20.1[] or $\frac{32}{5}\pi$ oe nfww	5	M1 for [hemisphere=] $0.5 \times their$ (a) soi or $0.5 \times \frac{4}{3}(\times) \pi (\times) 6^3$ or [pyramid=] $\frac{1}{3} \times 15 \times 15 [\times'h']$ soi M1 for [hemisphere=] $0.5 \times their$ (a) soi or $0.5 \times \frac{4}{3}(\times) \pi (\times) 6^3$ and [pyramid=] $\frac{1}{3} \times 15 \times 15 [\times'h']$ soi OR $0.3 \times their$ pyramid $[\times'h']$ or $\frac{their}{0.3}$ hemisphere oe M1 for hemisphere soi and $0.3 \times their$ pyramid $[\times'h']$ OR $\frac{their}{0.3}$ hemisphere oe and pyramid $[\times'h']$ soi M1 for $\frac{their}{0.3}$ hemisphere $\frac{1}{0.3}$ or $\frac{their}{0.3}$ hemisphere $\frac{1}{0.3}$ for $\frac{1}{0.3}$ for $\frac{1}{0.3}$ soi of $\frac{1}{0.3}$ soi Scored, allow SC3 for $\frac{1}{0.3}$ or $\frac{1}{0.3}$ or $\frac{1}{0.3}$ as final answer	Accept answer 20 after full working. No requirement at any stage for a formal equation. Values below provided as a guide to method being used, but mark method not accuracy: ie hemisphere (144π or $452.()$) or pyramid ($75[h]$) ie hemisphere (144π or $452.()$) and pyramid ($75[h]$) OR 30% of pyramid ($22.5[h]$) or "reverse %" using hemisphere (480π or $1507()$) ie hemisphere (144π or $452.()$) and 30% of pyramid ($22.5[h]$) OR "reverse %" using hemisphere (480π or $1507()$) and pyramid ($75[h]$). To receive M1M1M1 they should have both parts of the "ands" correct If correct, at this stage, it should be (480π or $1507()$) + 75 oe $1507()$ + 75 oe

OCR GSCE – Tuesday 6 November 2017 – Paper 5 (Non - Calculator) Higher Tier

97.

4	(a)	(x-43)(x+43) final answer	1	Condone omission of final bracket
	(b)	1400	2	M1 for FT factors $(x + 43)(x + 43)$ or $(x - 43)(x - 43)$ only

OCR GSCE – Tuesday 13 June 2017 – Paper 6 (Calculator) Higher Tier

98.

11		No,	4	B1 for 7250 or 7.25 seen	Ignore upper bound
		with correct calculation leading to	1 AO1.3b 2 AO3.1d	B1 for 305 or 0.305 seen	Ignore lower bound
		23.77 to 23.8 identified	1 AO3.3		
		or with 7.32 compared with 7.25 oe		M1 for their 7.25 ÷ their 0.305 with	Their 7.25 in range 7 to 8, their 0.305
		or 302 compared with 305 oe		consistent units and at least one	in range 0.29 to 0.31 or equivs.
				attempted bound	Ignore other divisions or products
				or for their 0.305 × 24 oe	M0 for 7500 ÷ 300 or 7.5 ÷ 0.3
				or their 7250 ÷ 24 oe	

OCR GSCE – Tuesday 13 June 2017 – Paper 6 (Calculator) Higher Tier

18	а	9.8[1] nfww	4 1 AO1.3b 2 AO3.1d 1 AO3.3	M3 for $\sqrt{46^2 + 46^2 + 55^2}$ or 85.18 to 85.2 or $\sqrt{7257}$ OR M2 for $46^2 + 46^2 + 55^2$ or 7257 or $\sqrt{46^2 + 46^2}$ or $\sqrt{4232}$ or 65.05 to 65.1 or $\sqrt{46^2 + 55^2}$ or $\sqrt{5141}$ or 71.7[] OR M1 for $46^2 + 46^2$ or 4232 or $46^2 + 55^2$ or 5141	Accept answers rounding to 9.8 if correct working seen Condone for full marks minor inaccuracies from rounding, such as $\sqrt{7256}$ seen May be done in steps
	b	40.2 nfww	3 1 AO1.3a 2 AO3.1c	M2 for sin [] = $\frac{55}{their 85.18 \text{ to } 85.2}$ or tan [] = $\frac{55}{their \sqrt{46^2 + 46^2}}$ or cos [] = $\frac{their \sqrt{46^2 + 46^2}}{their 85.18 \text{ to } 85.2}$ OR M1 for indication of required angle	Accept 40° and answers rounding to 40.2 if correct working seen $ 0 \text{ for tan } [\ldots] = \frac{55}{46} $ $ \mathbf{M2} \text{ for cosine rule with cos as subject } $ eg diagram showing angle

OCR GSCE – Sample Papers – Paper 4 (Calculator) Higher Tier

100.

9	(a)	10 metres	3 1 AO1.3a 2 AO3.1c	M1 for correct ratio $\frac{\text{height}}{20} = \frac{30}{60}$ oe M1 rearrange Or M1 for scale factor 0.5 M1 for 20 × 0.5	
	(b)	valid reasons, e.g. She would have to be very far from the building. The estimate is likely to be inaccurate due to the scale factors at the distances involved.	2 2 AO3.4a		

AQA GSCE – Thursday 8 November 2018 – Paper 2 (Calculator) Higher Tier 101.

	Evaluates method	B1	eg1 his method does not 1.2 m does not divide exa eg2 there are not a whole 50 cm in 1.2 m eg3 50 cm will not fit in 0 eg4 1.2 ÷ 0.5 = 2.4 which number eg5 120 ÷ 50 = 2.4 and 6 boxes eg6 can only fit 2 layers	e number of 2.2 m h is not a whole cannot have 2.4	
13	Evaluates claim	B1	eg1 he can only fit 40 eg2 he will not fit (as ma	ny as) 48	
	Additional Guidance				
	Volume divided volume doesn't always	s work		(1st) B0	
	He is wrong as he can put 42 boxes	(2nd) B0			
	Only 2 layers will fit so he can't fit 48 l	B1B1			
	Can't have 0.4 of a box so he can only fit 45 boxes			B1B0	
	5 × 4 × 2 = 40			B0B1	

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier 102.

	Alternative method 1				
6	Any one of $60\ 000 \div 420\ 000\ \text{or}\ 0.14$ or $14.()\%$ or $\frac{1}{7}$ or $480\ 000 \div 420\ 000\ \text{or}\ 1.14$ or $114.()\%$ or $\frac{8}{7}$ or $420\ 000 \div 60\ 000\ \text{or}\ 7$ or $420\ 000 \div 480\ 000\ \text{or}\ 0.875$ or 87.5% or $\frac{7}{8}$ or $60\ 000 \div 540\ 000\ \text{or}\ 0.11$ or $11.()\%$ or $\frac{1}{9}$ or $540\ 000 \div 60\ 000\ \text{or}\ 9$	M1	oe eg 60 000 : 420 000 or 1 : 7 or 480 000 : 420 000 or 8 : 7		
	Any one of $60\ 000 \div 480\ 000\ \text{or}\ 0.125$ or 12.5% or $\frac{1}{8}$ or $540\ 000 \div 480\ 000\ \text{or}\ 1.125$ or 112.5% or $\frac{9}{8}$ or $480\ 000 \div 60\ 000\ \text{or}\ 8$ or $480\ 000 \div 540\ 000\ \text{or}\ 0.88$ or $0.89\ \text{or}\ 88.()\%$ or 89% or $\frac{8}{9}$	M1	must be a matching pair (could be different forms) to award M2 (see A1 for list of matching pairs) oe eg 60 000 : 480 000 or 1 : 8 or 540 000 : 480 000 or 9 : 8		

Mark scheme continues on the next page

	$\frac{1}{7}$ and $\frac{1}{8}$ and No		oe eg 1:7 and 1:8 and No
	or		og and o and the
	$\frac{8}{7}$ and $\frac{9}{8}$ and No		
	or		
	0.14 and 0.125 and No		
	or		
	14.()% and 12.5% and No		
	or		
	1.14 and 1.125 and No		
	or		
	114.()% and 112.5% and No		
	or		
	7 and 8 and No		
6 cont	or	A1	
	$\frac{7}{8}$ and $\frac{8}{9}$ and No		
	or		
	$\frac{1}{9}$ and $\frac{1}{8}$ and No		
	or		
	9 and 8 and No		
	or		
	0.11 and 0.125 and No		
	or		
	11.()% and 12.5% and No		
	or		
	0.875 and 0.88 or 0.89 and No		
	or		
	87.5% and 88.()% or 89% and No		

Mark scheme continues on the next page

	Alternative method 2				
	No and any one of		oe		
	60 000 × 480 000 and		B2 any one of the calculations		
	[67200, 68640]		B1 any one of the fractions oe		
	or				
	60 000 × 540 000 and 67 500	В3	for equivalent fractions, decimals and percentages see Alternative method 1		
	or				
	60 000 × 420 000 and 52 500				
	or				
	60 000 540 000 × 480 000 and				
6 cont	[52 800, 53 334]				
	or				
	420 000 × 540 000 and 472 500				
	or				
	480 000 × 480 000 and				
	[547 200, 548 640]				
	or				
	480 000 × 480 000 and				
	[422 400, 427 200]				
	or				
	540 000 × 420 000 and 472 500				

Additional guidance continues on the next page

	Additional Guidance				
	In Alt 1, for M2 the matching pair do not have to be in comparable form				
	eg 14.3% and $\frac{1}{8}$ and No	M1M1A0			
	For comparable fractions, they must be in their lowest terms or have the same numerators or the same denominators for the A1				
6 cont	eg Alt 1 $\frac{60\ 000}{420\ 000}$ and $\frac{60\ 000}{480\ 000}$ and No	M1M1A1			
	For comparable ratios, they must be in their lowest terms or have the same LH sides or the same RH sides for the A1				
	eg Alt 1 60 000 : 420 000 and 60 000 : 480 000 and No	M1M1A1			
	If working with percentages, condone absence of % symbol				
	eg Alt 1 14 and 12.5 and No	M1M1A1			
	Both are increases of 60 000 and it is then over different amounts so cannot be the same percentage	M0M0A0			

AQA GSCE – Sample Paper 3 (Calculator) Higher Tier 103.

	Alternative method 1				
	27.5 or 26.5 or 20.5 or 19.5 or 15.5 or 14.5 or 14.35 or 14.25 or 19.25 or 19.15 or 1.55 or 1.45	B1	Any one seen		
	a bound of 27 ÷ a bound of 1.5	M1	Must see the calculation written down 26.5 ≤ a bound of 27 ≤ 27.5 but not 27 1.45 ≤ a bound of 1.5 ≤ 1.55 but not 1.5 eg 1 27.49 ÷ 1.45 eg 2 26.45 ÷ 1.54999		
	26.5 ÷ 1.55	M1	Must see the calculation written down 26.5 ÷ 1.55 scores B1 M1 M1		
21	[17.0, 17.1]	A1	Must see method		
	Alternative method 2				
	27.5 or 26.5 or 20.5 or 19.5 or 15.5 or 14.5 or 14.35 or 14.25 or 19.25 or 19.15 or 1.55 or 1.45	B1	Any one seen		
	17 × a bound of 1.5	M1	Must see the calculation written down 1.45 ≤ a bound of 1.5 ≤ 1.55 but not 1.5 eg 1 17 × 1.45 eg 2 17 × 1.54999		
	17 × 1.55	M1	Must see the calculation written down 17 × 1.55 scores B1 M1 M1		
	26.35 and 26.5	A1	Must see method		

Alternative method 3 on next page

	Alternative method 3			
	27.5 or 26.5 or 20.5 or 19.5 or 15.5 or 14.5 or 14.35 or 14.25 or 19.25 or 19.15 or 1.55 or 1.45	B1	Any one seen	
21	a bound of 27 ÷ 17	M1	Must see the calculation written down $26.5 \leqslant$ a bound of $27 \leqslant 27.5$ but not 27 eg 1 $27.49 \div 17$ eg 2 $26.45 \div 17$	
	26.5 ÷ 17	M1	Must see the calculation written down 26.5 ÷ 17 scores B1 M1 M1	
	[1.558, 1.559] and 1.55	A1		